

Published on Web 09/01/2006

Enantioselective Rhodium-Catalyzed [2+2+2] Cycloaddition of Alkenyl Isocyanates and Terminal Alkynes: Application to the Total Synthesis of (+)-Lasubine II

Robert T. Yu and Tomislav Rovis*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

Received July 8, 2006; E-mail: rovis@lamar.colostate.edu

Cycloaddition reactions of [m+n+o] type catalyzed by transition metals are powerful methods to construct polycyclic carbocycles and heterocycles of structural and functional complexity.¹ In light of potentially providing a general and efficient route to many indoand quinolizidine alkaloid natural products,² our group has focused on developing a catalyzed [2+2+2] cycloaddition of alkenyl isocyanates and alkynes.^{3,4} Previously, we have disclosed a Rh(I)/ P(4-MeO-C₅H₄)₃-catalyzed [2+2+2] cycloaddition between pentenyl isocyanate 2 and a variety of internal alkynes.⁵ The cycloaddition reaction includes a CO migration process to afford vinylogous amides as the major products in good yields. Herein, we describe the regio- and enantioselective rhodium-catalyzed [2+2+2] cycloaddition of alkenyl isocyanates with terminal alkynes to afford the corresponding bicyclic lactams and/or vinylogous amides using chiral phosphoramidites⁶ as ligands (eq 1). The synthetic utility is demonstrated in an expedient asymmetric total synthesis of (+)lasubine II.

Under our previously reported reaction conditions, the use of phenyl acetylene **1a** or other terminal alkynes often results in sluggish reactions and poor isolated yields (entry 1, Table 1), partly due to the competitive Rh-catalyzed head-to-tail dimerization of terminal alkynes.⁷ Attempts to improve the reaction led to the

Table 1. Ligand Screen^a

 + Ph 1a		% [Rh(C₂H, 10 mol % L' lluene, 110 [°]	$^{(a)_2Cl]_2}$	0 ↓ ↓ + 3a ^H	(R)-4a ^H
entry	ligand	3a : 4a b	yield (%) ^c	<i>ee</i> (%) of 3a ^d	<i>ee</i> (%) of 4a ^d
1	P(4-MeO-C ₆ H ₄) ₃	1:1	< 20	-	-
2	L1 ""	1:2.2	32	5	55 ^e
3	L2	1:4.5	50	45 ^e	8
4	L3	1:7.0	80	83	94
5	L4	1:3.3	76	90	81
6	L5	1 : 7. 3	87	89	94

^{*a*} Conditions: **1** (2 equiv), **2**, Rh catalyst (5 mol %), **L** (10 mol %) in PhMe at 110 °C for 16 h. ^{*b*} Lactam—vinylogous amide product selectivity determined by ¹H NMR of the unpurified reaction mixture. ^{*c*} Combined isolated yield. ^{*d*} Determined by HPLC using a chiral stationary phase. ^{*e*} Other enantiomer.

12370 J. AM. CHEM. SOC. 2006, 128, 12370-12371

 Ar 1	0 + 5 mol % [R 10 mol 2	h(C ₂ H ₄) ₂ Cl] % (–)-L5 , 110 °C	Ar (S)-3	\tilde{H} + (Ar (R)-4
entry	Ar	3 : 4 ^b	yield (%) ^c	<i>ee</i> (%) of	$\overline{3^{\mathrm{d},\mathrm{e}} e e}$ (%) of $4^{\mathrm{d},\mathrm{e}}$
1	3,4-OMe-C ₆ H ₃ , 1b	< 1 : 20	72	-	94
2	<i>p</i> -OMe-C ₆ H ₄ , 1c	< 1 : 20	70	-	90
3	o-OMe-C ₆ H ₄ , 1d	< 1 : 20	64	-	94
4 ^f	<i>p</i> -NMe ₂ -C ₆ H ₄ , 1e	< 1 : 20	78	-	87
5	<i>m</i> -Tol, 1f	1:8.3	65	-	94
6 ^f	-ξ-€_S , 1g	1:9.0	64	-	86
7	۲ R = H, 1h	< 1 : 20	65	-	90
8	^N R = Boc, 1 i	< 1 : 20	85	-	91
9	Ph, 1a R	1 : 7.3	86	89	94
10	<i>p</i> -Br-С ₆ Н ₄ , 1ј	1:3.2	72	90	89
11	<i>p</i> -Cl-C ₆ H ₄ , 1k	1:3.8	65	93	90
12	<i>m</i> -F-C ₆ H ₄ , 1 I	1 : 1.8	68	94	94
13	<i>p</i> -Ac-C ₆ H ₄ , 1m	1:1.5	65	94	81
14	<i>p</i> -CF ₃ -C ₆ H ₄ , 1n	2.5 : 1	50	94	-
15	- ξ- \$-\$, 10	< 1 : 20	96	-	92

Table 2. Scope of the Cycloaddition with Aryl Acetylenes^a

 a^{-d} See Table 1. ^{*e*} Absoloute configuration assigned by analogy to (*S*)-**3j** and (*R*)-**4j** (established by X-ray analysis). ^{*f*} L**3** used as the ligand.

discovery of Rh(I)/phosphoramidite complexes as more efficient catalysts. Treatment of 1a and isocyanate 2 with 5 mol % [Rh-(C₂H₄)₂Cl]₂ and 10 mol % BINOL-derived ligand L1 (MONO-PHOS) furnishes the cycloadducts 3a/4a in 32% combined yield with a 1:2.2 product selectivity, favoring the vinylogous amide 4a with a moderate enantioselectivity (entry 2). While the bulkier ligand L2 increases both the reactivity and lactam-vinylogous amide selectivity, the enantioselectivity of 4a decreases significantly (entry 3). Conversely, TADDOL-derived phosphoramidites are found to be much superior ligands. The cycloaddition generally proceeds cleanly to furnish the cycloadducts in high yields and enantioselectivity (entries 4-6). The commercially available L3 affords (R)-4a with very good lactam-vinylogous amide selectivity (entry 4). Replacing the dimethylamino group with the more rigid piperidinyl as in L4 increases the production of the lactam (S)-3a (entry 5). The pyrrolidinyl-substituted ligand L5 is the current standard, providing a slightly better product selectivity and reactivity (entry 6).⁸ It is noteworthy that the cycloaddition proceeds in a highly regioselective manner, as both (S)-3a and (R)-4a are isolated as single regioisomers (>20:1 by ¹H NMR).

Table 2 summarizes the scope of the enantioselective [2+2+2] cycloaddition of isocyanate **2** with a variety of aryl acetylenes. Electron-rich substituted aryl acetylenes readily participate in the cycloaddition to afford almost exclusively the *vinylogous amide* **4** products in good yields and high enantiomeric excess (entries 1-5). Heteroaryl acetylenes including both free and protected indoles also undergo the cycloaddition efficiently (entries 6-8). Electron-

withdrawing substituted aryl acetylenes also participate readily in the cycloaddition (up to 94% ee), with the product selectivity gradually shifting toward increased amount of *lactam* **3** with increasing electron-withdrawing ability (entries 10-14).⁹ The reaction is not restricted to aryl acetylenes, as the cyclic enyne **10** also participates to generate exclusively the corresponding *vinylogous amide* **4** in high efficiency (entry 15).

Asymmetric syntheses of quinolizinones **6** can also be achieved in moderate to good yields with excellent enantiocontrol (Scheme 1). The reactions are accompanied by varying amounts of pyridones **7** as side products,¹⁰ suggesting that the alkene moiety is the last 2π component incorporated. To demonstrate the synthetic utility of this methodology, enantioenriched **6b** undergoes a diastereoselective hydrogenation followed by a Mitsunobu to complete the total synthesis of (+)-lasubine II¹¹ in only three steps from isocyanate **5**.

In contrast to the *vinylogous amide* selectivity observed for most aryl acetylenes, reactions with alkyl acetylenes provide primarily *lactam* products, presumably due to the electronic differences between the alkyl and aryl groups (Table 3). By employing **L4**, cycloadditions with primary alkyl acetylenes proceed smoothly to afford *lactams* **3** with excellent product selectivity (up to >20:1), good enantioselectivity (up to 87% ee), and good isolated yields (entries 1–6). The more sterically hindered cyclohexyl acetylene (entry 7) furnishes both types of products in an approximately 1:1 ratio with excellent enantioselectivity for **4v** (95% ee), suggesting that both sterics and electronics play a role in governing product selectivity.

A proposed mechanism is outlined in Scheme 2. An initial oxidative cyclization between the isocyanate and alkyne in an orientation where a C–N bond is formed provides metalacycle **A**. A CO migration^{12,13} to **B** followed by olefin insertion and reductive elimination furnishes the *vinylogous amides* (pathway A). In a different orientation, metallacycle **D** is formed with a C–C bond

Table 3.	Scope	of the	Cycloaddition	with	Alkyl	Acetylenes
----------	-------	--------	---------------	------	-------	------------

∭ +	0,1C,1N~	5 mol % [Rh 10 mol	I(C₂H₄)₂CI]₂ I % L4	N N	+N
I ' R	\sim	Toluene	, 110 ℃	R	
1	2			(<i>S</i>)-3 [⊢]	(<i>R</i>)-4 [⊢]
entry		R	3 ∶ 4 ^b	yield (%) ^c	<i>ee</i> (%) of 3 ^d
1	<i>n</i> Hex, 1p	1	5.0 : 1	78	80
2	(CH ₂) ₄ C0	D₂Me, 1q	5.8 : 1	65	80
3	CH ₂ CH ₂ I	Ph, 1r	> 20 : 1	47	84
4	Bn, 1s		> 20 : 1	50	84
5	CH ₂ CH ₂	DTBS, 1t	> 20 : 1	65	87
6	CH ₂ OMe	, 1u	> 20 : 1	46	76
7 ^f	-\$-	, 1v	1.2 : 1	82	77, 95 ^e

a-d See Table 1. e ee (%) of 4v. f L3 used as the ligand.

Scheme 2. Proposed Mechanism

formation (pathway B). Subsequent olefin insertion and reductive elimination provides the *lactams*.

In summary, we have developed a highly regio- and enantioselective rhodium-catalyzed [2+2+2] cycloaddition involving alkenyl isocyanates and terminal alkynes, providing efficient access to indoand quinolizinone cores.

Acknowledgment. We thank Susie Miller for X-ray analyses. We thank Merck, Eli Lilly, Amgen, Johnson and Johnson, and Boehringer Ingelheim for unrestricted support. T.R. is a fellow of the Alfred P. Sloan Foundation and thanks the Monfort Family Foundation for a Monfort Professorship.

Supporting Information Available: Detailed experimental procedures and compound characterization (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For recent reviews: (a) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (b) Murakami, M. Angew. Chem., Int. Ed. 2003, 42, 718.
 (c) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (d) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209.
- (2) Michael, J. P. Nat. Prod. Rep. 2005, 22, 603.
- (3) Hoberg has extensively investigated the metal-mediated coupling of isocyanates and various π systems: (a) Hoberg, H.; Hernandez, E. Angew. Chem., Int. Ed. Engl. 1985, 24, 961. (b) Hoberg, H. J. Organomet. Chem. 1988, 358, 507. (c) Hoberg, H.; Bärhausen, D.; Mynott, R.; Schroth, G. J. Organomet. Chem. 1991, 410, 117.
- (4) For [2+2+2] cycloadditions of alkynes and isocyanates catalyzed by various metals. Co: (a) Earl, R. A.; Vollhardt, K. P. C. J. Org. Chem. 1984, 49, 4786. (b) Hong, P.; Yamazaki, H. Tetrahedron Lett. 1977, 1333. (c) Bonaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E. J. Am. Chem. Soc. 2005, 127, 3473. Ru: (d) Yamamoto, Y.; Takagishi, H.; Itoh, K. Org. Lett. 2001, 3, 2117. (e) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605. Ni: (f) Hoberg, H.; Oster, B. W. Synthesis 1982, 324. (g) Duong, H. A.; Cross, M. J.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438. Rh: (h) Tanaka, K.; Wada, A.; Noguchi, K. Org. Lett. 2005, 7, 4737.
- (5) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782.
- (6) (a) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (b) Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Leveque, J.; Maze, F.; Rosset, S. Eur. J. Org. Chem. 2000, 4011. (c) Panella, L.; Feringa, B. L.; de Vries, J. G.; Minnaard, A. J. Org. Lett. 2005, 7, 4177. (d) Woodward, A. R.; Burks, H. E.; Chan, L. M.; Morken, J. P. Org. Lett. 2005, 7, 5505.
- (7) For selected references: (a) Yoshikawa, S.; Kiji, J.; Furukawa, J. *Makromol. Chem.* **1977**, *178*, 1077. (b) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem. **1990**, *55*, 3277. (c) Lee, C.; Lin, Y.; Liu, Y.; Wang, Y. Organometallics **2005**, *24*, 136.
- (8) These reaction conditions provide inferior results with internal alkynes. For example, Rh(I)/L5 provides the vinylogous amide in 28% yield and 9% ee when using diphenylacetylene as the alkyne partner.
- (9) This effect may be partially rationalized through Hoffmann's theoretical study if one considers orbital coefficients in the LUMO of the alkyne. See: Stockis, A.; Hoffmann, R. J. Am. Chem. Soc. 1980, 102, 2952.
- (10) Pyridone formation from isocyanate 2 is not observed by ${}^{1}H$ NMR (<5%).
- For recent asymmetric syntheses of lasubine II, see: (a) Davis, F. A.; Chao, B. Org. Lett. 2000, 2, 2623. (b) Ma, D.; Zhu, W. Org. Lett. 2001, 3, 3927. (c) Back, T. G.; Hamilton, M. D. Org. Lett. 2002, 4, 1779.
- (12) (a) Braunstein, P.; Nobel, D. Chem. Rev. 1989, 89, 1927. (b) Barnhart, R. W.; Bosnich, B. Organometallics 1995, 14, 4343. (c) Tanaka, K.; Fu, G. C. Chem. Commun. 2002, 684.
- (13) Conducting the cycloaddition under 1 atm of CO leads to no reaction.

JA064868M